Development of cutting-edge aircraft for the advancement of the aviation industry
The aviation industry is technology-led and technology-competitive based on technology integration and industry applying cutting-edge technologies such as computers, precision machinery, communications electronics, and new materials, wielding a large ripple effect on other industries. KARI focuses on improving the technology level and building the foundation for independent technology development to facilitate the development of the high-value-added aviation industry. KARI successfully developed the Bandi, a small four-seater aircraft with domestic technology and 18 core components for civil and military use as to be applied to the Korean Helicopter Program (KHP) for helicopter technology independence. That made Korea the 11th country in the world to develop helicopters. Related technologies were also derived for the development of military and civil helicopters. KARI signed the Bilateral Aviation Safety Agreement (BASA) with the United States to enter overseas markets for aviation technology and developed the small aircraft (KC-100) certified for international aviation safety.Development of personal aircraft for eco-friendly, high-efficiency aviation technology and transportation innovation
The competition to develop eco-friendly, high-efficiency aviation technologies and unmanned aerial vehicles (UAVs) to enhance the economy, safety, and efficiency of aircraft has heated up recently. Although UAVs were initially developed for military use, their applications have recently expanded to private sectors such as science and technology, transportation, communication, logistics, rescue, aerial photography, and agriculture, and they are expected to lead the aviation industry’s growth and market in the future. According to aerospace and defense consulting company Teal group, the UAV market size is expected to grow to USD 12.5 billion by 2023, USD 880 million of which will be for civil use, to show a high annual average growth of 35%. Since UAV is the convergence system of aviation technology and IT, it is ideal for Korea. Currently considered to have the world’s top 7 UAV technical competitiveness, Korea aims to rank among the top 5 UAV industrial countries by 2023 and among the top 3 by 2027. KARI is developing a personal air vehicle (PAV) that will bring transportation innovation in the future through the convergence of advanced UAVs, aviation technology, and information and communication technology (ICT) that can penetrate the global UAV niche markets. Beginning with the Durumi, a small endurance UAV, KARI developed a medium-sized aerostat system and an LTA (Lighter Than Air) aircraft system with long endurance. It also developed the world's second smart UAV, a tiltrotor capable of both vertical takeoff/landing and high-speed flight. Since then, the institute has transferred the smart UAV technologies to industries, and it plans to develop various derivative technologies such as automatic shipboard takeoff/landing technology, tilt duct UAV, and quad tilt-prop (QTP) UAV to be used for the commercialization of tiltrotor UAV, future aircraft, and next-generation flight vehicles. KARI has also developed an electrical aerial vehicle (EAV), a solar-powered UAV that can stay in the stratosphere for a long time, and various types of disaster relief UAVs that can protect public safety and respond to disasters and accidents. Currently, KARI is developing future advanced core technologies for unmanned vehicles to identify innovative unmanned vehicles such as autonomous vehicles and autonomous ships and develop original technologies. Moreover, KARI is developing the core technologies for the optionally piloted personal air vehicle (OPPAV) that will bring new air traffic innovations, the unmanned aerial system traffic management (UTM) system for the safe and efficient flight of UAVs, and the small UAV certification technology to broaden the use of UAVs in the private sector. Its R&D program also includes the UAV collision avoidance system that automatically determines the risk of aerial collision and avoids it.